
Introduction How it works Potential issues Conclusion

Introduction to HTCondor
How to distribute your compute tasks and get results

with high performance, keeping machines and site admins
joyful

Oliver Freyermuth

University of Bonn
freyermuth@physik.uni-bonn.de

28th August, 2019

1/ 26

mailto:freyermuth@physik.uni-bonn.de

Introduction How it works Potential issues Conclusion

Overview

1 Introduction
2 How HTCondor works and how it can be used
3 What might go wrong. . .
4 Hands-on tutorial!

Find this talk and the actual tutorial at:
https://git.io/gridka-2019-htcondor

2/ 26

https://git.io/gridka-2019-htcondor

Introduction How it works Potential issues Conclusion Characterization Why HTCondor?

Welcome!

About me
studied physics in Bonn, starting in 2007
PhD finished in 2017 at the BGO-OD experiment located at
ELSA in Bonn (Hadron Physics, photoproduction)
Focus on software development (C++ / ROOT)
since 2017: IT dep. of Physikalisches Institut at Uni Bonn

Central services (desktops, printers, web, virtualization. . .)
Grid-enabled computing cluster:
used by HEP, theory, detector dev., photonics,. . .
HTCondor & Singularity containers, CephFS, CVMFS,. . .
Automation of all services and machine deployments
Support for users
IT security

TL;DR: Feel free to ask both from user and admin point of view!

Now: Your turn!
3/ 26

Introduction How it works Potential issues Conclusion Characterization Why HTCondor?

HTCondor

Workload Management system for dedicated resources, idle
desktops, cloud resources, . . .
Project exists since 1988 (named Condor until 2012)
Open Source, developed at UW-Madison, Center for High
Throughput Computing
Key concepts:

‘Submit Locally. Run globally.’ (Miron Livny)
One interface to any available resource.
Integrated mechanisms for file transfer to / from the job
‘Class Ads’, for submitters, jobs, resources, daemons, . . .
Extensible lists of attributes (expressions) — more later!
Supports Linux, Windows and MacOS X and has a very diverse
user base
CERN community, Dreamworks and Disney, NASA,. . .

4/ 26

Introduction How it works Potential issues Conclusion Characterization Why HTCondor?

What is a workload manager?

User B Compute Resource
(e.g. local cluster, desktops, cloud)

User A

jobs

jobs

takes care of collecting users’ requirements
prioritization / fair share
enforcing limits
collect resource information
distribute jobs efficiently
monitor status for users and admins

5/ 26

Introduction How it works Potential issues Conclusion Characterization Why HTCondor?

Why HTCondor?

High Throughput Computing
many jobs, usually loosely coupled or independent, goal is large
throughput of jobs and / or data

High Performance Computing
tightly coupled parallel jobs which may span several nodes and often
need low-latency interconnects

HTCondor can do both (HPC-like tasks need some ‘tuning’)
HPC community: Slurm (less flexible, but easier to get up and
running for HPC!)

) Let’s have a look at how HTCondor works.

6/ 26

Introduction How it works Potential issues Conclusion Structure ClassAds Job Description

Structure of HTCondor

schedd
startd

collector / negotiator

shadow
shadow
shadow

shadow
shadow
shadowshadow

starter
starter
starter
starter
starter
starter

7/ 26

Introduction How it works Potential issues Conclusion Structure ClassAds Job Description

HTCondor’s ClassAds
Any submitter, job, resource, daemon has a ClassAd
ClassAds are basically just expressions (key = value)
Dynamic evaluation and merging possible

Job ClassAd

Executable = some-script.sh
+ContainerOS="CentOS7"

Request_cpus = 2
Request_memory = 2 GB
Request_disk = 100 MB

Machine ClassAd

Activity = "Idle"
Arch = "X86_64"
Cpus = 8
DetectedMemory = 7820
Disk = 35773376
has_avx = true
has_sse4_1 = true
has_sse4_2 = true
has_ssse3 = true
KFlops = 1225161
Name = "slot1@htcondor-wn-7"
OpSys = "LINUX"
OpSysAndVer = "CentOS7"
OpSysLegacy = "LINUX"
Start = true
State = "Unclaimed"

8/ 26

Introduction How it works Potential issues Conclusion Structure ClassAds Job Description

HTCondor’s ClassAds

Job and Machine ClassAd extended / modified by HTCondor
configuration
Merging these ClassAds determines if job can run on machine
Examples for dynamic parameters:

Select a different binary depending on OS / architecture
Machine may only want to ‘Start’ jobs from some users

You can always check out the ClassAds manually to extract all
information (use the argument -long to commands!)
To extract specific information, you can tabulate any attributes:

$ condor_q -all -global -af:hj Cmd ResidentSetSize_RAW
RequestMemory RequestCPUs,!

ID Cmd ResidentSetSize_RAW RequestMemory RequestCPUs
2.0 /bin/sleep 91168 2048 1

9/ 26

Introduction How it works Potential issues Conclusion Structure ClassAds Job Description

What HTCondor needs from you. . .

A job description / Job ClassAd
Resource request, environment, executable, number of jobs,. . .

Executable = some-script.sh

Arguments = some Arguments for our program $(ClusterId) $(Process)
Universe = vanilla
Transfer_executable = True

Error = logs/err.$(ClusterId).$(Process)
#Input = input/in.$(ClusterId).$(Process)
Output = logs/out.$(ClusterId).$(Process)
Log = logs/log.$(ClusterId).$(Process)

+ContainerOS="CentOS7"

Request_cpus = 2
Request_memory = 2 GB
Request_disk = 100 MB

Queue

10/ 26

Introduction How it works Potential issues Conclusion Structure ClassAds Job Description

What HTCondor needs from you. . .
some-script.sh

Often, you want to use a wrapper around complex software
This wrapper could be a shell script, python script etc.
It should take care of:

Argument handling
Environment setup (if needed)
Exit status check (bash: consider -e)
Data handling (e.g. move output to shared file system)

#!/bin/bash
source /etc/profile
set -e
SCENE=$1

cd ${SCENE}
povray +V render.ini
mv ${SCENE}.png ..

11/ 26

Introduction How it works Potential issues Conclusion Structure ClassAds Job Description

Submitting a job

$ condor_submit myjob.jdl
Submitting job(s)..
1 job(s) submitted to cluster 42.

There are many ways to check on the status of your job (we will try
them in the tutorial):

condor_tail -f can follow along stdout / stderr
(or any other file in the job sandbox)
condor_q can access job status information (memory usage,
CPU time,. . .)
log file contains updates about resource usage, exit status etc.
condor_history provides information after the job is done
condor_ssh_to_job may allow to connect to the running job
(if cluster setup allows it)

12/ 26

Introduction How it works Potential issues Conclusion Structure ClassAds Job Description

Advanced JDL syntax

Executable = /home/olifre/advanced/analysis.sh
Arguments = “-i ‘$(file)’”
Universe = vanilla
if $(Debugging)
slice = [:1]
Arguments = "$(Arguments) -v"

endif
Error = log/$Fn(file).stderr
Input = $(file)
Output = log/$Fn(file).stdout
Log = log/analysis.log
Queue FILE matching files $(slice) input/*.root

HTCondor offers macros and can queue varliable lists, file names. . .
Can you guess what happens if you submit as follows?

condor_submit 'Debugging=true' analysis.jdl

13/ 26

Introduction How it works Potential issues Conclusion Structure ClassAds Job Description

DAGs: Directed Acyclic Graphs

Often, jobs of different type of an analysis chain depend on
each other
Example: Monte Carlo, comparison to real data, Histogram
merging,. . .
These dependencies can be described with a DAG
Condor runs a special ‘DAGMAN’ job which takes care of
submitting jobs for each ‘node’ of the DAG,
check status, limit idle and running jobs, report status etc.
(like a Babysitter job)
DAGMAN comes with separate logfiles, DAGs can be stopped
and resumed

We will see an example in the tutorial!

14/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Problems and inefficiencies

Theoretically, users should not need to care about cluster
details. . .
Jobs could transfer all their data with them, and back — but
this does not scale for GB of data, thousands of files for
thousands of (short) jobs
Jobs need to take care to be ‘mobile’ and run in the correct
environment

Some setup details can not be ignored for efficient usage
Let’s have a short look at elements of computing clusters and how
(not) to design your jobs!

15/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

A typical HTC cluster: I/O intensive loads

Shared / parallel file system for data, job input and output
CephFS, Lustre, BeeGFS, GPFS,. . .
Often, also a second file system (e.g. to distribute software)
CVMFS, NFS, . . .
Usually, local scratch disks in all worker nodes
‘classic’ file system such as ext4
Often, dedicated submit nodes, data transfer nodes etc.

) Lots of differently behaving file systems!

16/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Working with a shared file system

Common sources of woes
Excessive file metadata operations
Syscalls: open, close, stat, fsync. . .)
use strace to diagnose and debug
Storing or reading many small files from shared FS
There is usually a dedicated place for software (more later).
Destructive interference between jobs

Opening an input file exclusively
Writing to the very same output file

17/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Working with a shared file system (e.g. Lustre)

WN001

OSS01
OSS02
OSS03

Metadata
server(s)

ClientsFile Servers

echo "test" > ~/file.txt
•check if file exists
•lock directory
•create file (update directory),
 set file attributes (ctime,...)
•unlock directory
•lock file
•learn stripe settings
•write "test" to file
•update 'mtime', close and unlock

} "~/" is locked

}"~/file.txt" is locked

no other client
can create / delete files!

other clients can read,
but old content

x number of running jobs,
x number of metadata accesses

18/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Working with a shared file system

Common solutions
Use a different file system for software (many small files!)
CVMFS, NFS,. . .
Most software is (likely) already provided by cluster admins —
use it!
They know how to compile best for the available hardware.
Do not install everything from scratch
(e.g. pip install "everything")
Package quickly changing software builds in a tarball,
extract it to scratch disk in the job wrapper script
Advantage: Consistent software state for all jobs.
Have jobs write to scratch first and move to shared FS later
Advantage: If job is evicted, no broken output file.
(may reconsider for very large output!)

19/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Working with a workload manager

Common sources of woes
Mismatched resource request and usage (more later)
Hefty / bad use of condor file transfer, for example:
Shared FS accessible from submit machine, transferring files
from / to there
Badly suited job runtimes
too short Overhead per job causes inefficiency, some

workload managers overload easily
too long Unless the job does checkpointing, very sensitive

to any disturbance, operational issues (kernel
updates / reboots etc.)

Frameworks which create thousands of JDL files and wrapper
scripts
(instead of using flexible syntax or Python API)

20/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Working with different environments

How to compile code?
Some resources may only be available via interactive jobs

Advantage for admins: No separate bare metal machines
Advantage for you: Environment the same as in the job!

Compile the code, pack it into a tarball, copy to shared FS /
condor file transfer
Can be automated with scripts / if offered, job start hooks
(like ‘.bashrc’)

Advantages of this approach
Portable and stable job executables
If combined with containers and ‘mobile data’: Mostly cluster
independent jobs possible

21/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Mismatched resource requests

Mismatched CPU request
Often caused by software using all ‘visible’ cores — configure!

export NUMEXPR_NUM_THREADS=1
export MKL_NUM_THREADS=1
export OMP_NUM_THREADS=1

Admins may export these variables for you. . .
Too many threads: Congestion, may affect other jobs

Mismatched memory request
Depending on configuration, may lead to swapping) hefty
slowdown (affects also other jobs)
Swap usage not visible in HTCondor Ads (yet)
Admins could also set a hard limit (no swap)) job killed

22/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

What about other resources?

Disk Space
Disk space is not ‘consumable’ in HTCondor
Usually, this affects scratch space only (job working directory)
Commonly, not an actual issue (shared file systems have quotas
on size, number of files)
More common is local disk overload due to heavy syscalls /
many small files / swap

CPU cache thrashing
Commonly ignored issue — e.g. limiting CPU cache usage not
supported by HTCondor yet (but there are plans)!

23/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Common tricks used by admins

Node health check
Detects unhealthy node from error or misbehaving jobs.

24/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Common tricks used by admins

Node health check
Fights against spread of inefficiencies / overload.

24/ 26

Introduction How it works Potential issues Conclusion What might go wrong. . .

Common tricks used by admins

25/ 26

Introduction How it works Potential issues Conclusion Conclusion

Conclusion

HTCondor is very flexible — you can check out configuration
via ClassAds!
Each cluster may be slightly different (CERN has job flavours
to define job runtime, Bonn has containers with different
environments,. . .)
We will learn job submission today — to run efficiently, you
also need to know your software and basics of the cluster

Ask questions any time!
And now, get started at:
https://git.io/gridka-2019-htcondor

26/ 26

https://git.io/gridka-2019-htcondor

Thank you

for your attention!

	Introduction
	Characterization
	Why HTCondor?

	How it works
	Structure
	ClassAds
	Job Description

	Potential issues
	What might go wrong…

	Conclusion
	Conclusion

	Appendix

